Code No: P18CET04

HALL TICKET NUMBER

PACE INSTITUTE OF TECHNOLOGY & SCIENCES::ONGOLE (AUTONOMOUS) II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023 FLUID MECHANICS

(CE Branch)

Time: 3 hours

Max. Marks: 60

Note: Question Paper consists of Two parts (Part-A and Part-B) <u>PART-A</u>

		Answer all the questions in Part-A (5X2=10M)			
Q.1	No.	Questions	Marks	CO	KL
1	a)	Explain how certain insects are able to walk on the surface of water?	[2M]	1	
	b)	What do you mean by Absolute pressure head and Gauge pressure head?	[2M]	2	
	c)	Differentiate between steady flow and uniform flow	[2M]	3	
	d)	List the causes of minor energy losses in flow through pipes	[2M]	4	
	e)	What do you understand by the terms of boundary layer and of boundary layer	[2M]	5	
		theory?			

<u>PART-B</u>

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
		UNIT-I		1	
2.	a)	Prove the relation between surface tension and pressure inside the pressure of the hallow bubble of the liquid $P = \frac{4\sigma}{d}$	[5M]	1	
	b)	Calculate the capillary effect in millimeters in a glass tube of 10mm diameter, when immersed in (i) water, and (ii) mercury. The temperature of the liquid is 20° C and the values of the surface tension of water and mercury at 20° C in constant with air are 0.07 N/m and 0.60 N/m respectively. The angle of contact for water is zero that of for mercury 130° . Take density of water at 20° C as equal to 990 kg/m ³ .	[5M]	1	
		OR			
3.		Develop the expression for the rate of increase of pressure in vertical direction is equal to weight density. $\frac{\partial p}{\partial z} = \rho g.$	[10M]	1	
		UNIT-II			
4.		Derive an expression for the force exerted on a sub-merged vertical plane surface by the static liquid and locate the position of centre of pressure.	[5M]	2	
		Explain the fallowing teams and give one example each(i). Stream line(ii). Path line(iv). Laminar flow(v). Turbulent flow	[5M]	2	
		OR			
5.		State and derive continuity equation for incompressible fluid and compressible fluid.(3D)	[10M]	2	
		UNIT-III			
6.		State Bernoulli theorem for steady flow of an incompressible fluid. Derive an expression for Bernoulli equation and state the assumptions made.	[10M]	3	
		OR			
7.		A 300mm diameter pipe carries water under a head of 200m with a velocity of 3.5 m/s. If the axis of the pipe turns through 45 [°] , find the magnitude and direction of the resultant force at the bend	[10M]	3	

R18

		UNIT-IV			
8.		Derive the expression for the loss of head in a pipe (Darcy-Weisbach equation)	[10M]	4	
		OR			
9.		What do you understand by the total energy line, hydraulic gradient line, pipes in series, pipes in parallel and equivalent pipe.	[10M]	4	
!		UNIT-V	I I		
10.		Explain the principle of venturimeter with neat sketch? Derive an expression for the rate of flow of fluid through it.	[10M]	5	
		OR			
11.	a)	A rectangular orifice 0.9 m wide and 1.2 m deep is discharge water from a tank. If the water level in the tank is 0.6 m above the top edge of the orifice, find the discharge through the orifice, taking the coefficient of discharge for the orifice = 0.6 .	[7M]	5	
	b)	Difference between small and large orifice. Obtain an expression for discharge through a orifice	[3M]	5	
·		*****			
